Publication Beamlines Strategic Pillar
Swanston, Treena; Varney, Tamara L.; Kozachuk, Madalena; Choudhury, Sanjukta; Bewer, Brian et al. (2018). Franklin expedition lead exposure: New insights from high resolution confocal x-ray fluorescence imaging of skeletal microstructure. PLoS ONE 13(8) , e0202983. 10.1371/journal.pone.0202983. CLS-APS Agriculture
Grochulski; P.; Fodje; M.N.; George et al. (2012). Status and Vision for Structural Biology at the Canadian Light Source. In Acta Physica Polonica A. Institute of Physics, Polish Academy of Sciences, Poland. , 866-870 10.12693/APhysPolA.121.866. BIOXAS-IMAGING, BIOXAS-MAIN, BIOXAS-SIDE, BMIT-ID, CMCF-BM, SM Agriculture
Stephen Campbell (2023). Vibrational spectroscopy and the structure of solids: The example of carbonate minerals. Supervisor: Poduska, Kristin, M.. Newfoundland and Labrador, Canada: Memorial University. https://doi.org/10.48336/M3DG-WP79. MID-IR Environment
Van Den Berghe, Martin D.; Jamieson, Heather E.; Palmer, Michael J. (2018). Arsenic mobility and characterization in lakes impacted by gold ore roasting, Yellowknife, NWT, Canada. Environmental Pollution 234, 630-641. 10.1016/j.envpol.2017.11.062. CLS-APS Environment
Lastra, R.; Paktunc, D. (2016). An estimation of the variability in automated quantitative mineralogy measurements through inter-laboratory testing. Minerals Engineering 95, 138-145. 10.1016/j.mineng.2016.06.025. CLS-APS Environment
Manceau, Alain; Merkulova, Margarita; Murdzek, Magdalena; Batanova, Valentina; Baran, Rafal et al. (2018). Chemical Forms of Mercury in Pyrite: Implications for Predicting Mercury Releases in Acid Mine Drainage Settings. Environmental Science & Technology 52(18) , 10286-10296. 10.1021/acs.est.8b02027. CLS-APS Environment
Yu, Dawei; Paktunc, Dogan (2018). Calcium Chloride-Assisted Segregation Reduction of Chromite: Influence of Reductant Type and the Mechanism. Minerals 8(2) , 45. 10.3390/min8020045. CLS-APS Environment
Erin Renee Kope (2017). Elucidating the Relationship between Boron Coordination Chemistry and Uranium Mineralization in the Thelon Basin, Nunavut using XANES Spectroscopy. Supervisor: Banerjee, Neil R.; Van Loon, Lisa L.. Ontario, Canada: Western University. . CLS-APS, VLS-PGM Environment
Fodje, Michel; Mundboth, Kiran; Labiuk, Shaunivan; Janzen, Kathryn; Gorin, James et al. (2020). Macromolecular crystallography beamlines at the Canadian Light Source: building on success. Acta Crystallographica Section D: Structural Biology 76(7) . 10.1107/s2059798320007603. CMCF-BM, CMCF-ID Health
Grace T. Flaman (2024). Infrared Chemical Imaging of Custom-Made Microfluidic Devices. Supervisor: Burgess, Ian J.. Saskatchewan, Canada: University of Saskatchewan. https://hdl.handle.net/10388/15411. MID-IR, SYLMAND Materials
Wurtz, W.A.; Baribeau, C.K.; Sigrist, M.J. (2023). Rectifying unexpected injection issues due to an elliptically polarizing undulator. Nuclear Instruments and Methods in Physics Research. Section A: Accelerators. Spectrometers. Detectors and Associated Equipment 1048, 168001. 10.1016/j.nima.2022.168001. SM Materials
Mazhar, Waqas; Klymyshyn, David M; Achenbach, Sven; Qureshi, Aqeel Ahmed; Wells, Garth et al. (2020). On the fabrication of thin-film artificial metal grid resonator antenna arrays using deep X-ray Lithography. Journal of Micromechanics and Microengineering . 10.1088/1361-6439/ab6dbd. SYLMAND Materials
Mazhar, Waqas; Klymyshyn, David; Wells, Garth; Qureshi, Aqeel; Jacobs, Michael et al. (2019). 60 GHz Substrate Integrated Waveguide-Fed Monolithic Grid Dielectric Resonator Antenna Arrays. IEEE Antennas and Wireless Propagation Letters 18(6) , 1109-1113. 10.1109/lawp.2019.2910255. SYLMAND Materials
Wells, Garth; Achenbach, Sven; Subramanian, Venkat; Jacobs, Michael; Klymyshyn, David et al. (2019). SyLMAND: a microfabrication beamline with wide spectral and beam power tuning range at the Canadian Light Source. Journal of Synchrotron Radiation 26(2) , 565-570. 10.1107/s1600577518017721. SYLMAND Materials
Zhou, Yansong; Che, Fanglin; Liu, Min; Zou, Chengqin; Liang, Zhiqin et al. (2018). Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nature Chemistry 10(9) , 974-980. 10.1038/s41557-018-0092-x. CLS-APS Materials